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Polyharmonic splines, sometimes called thin plate splines, are distributions which
are annihilated by iterates of the Laplacian in the complement of a discrete set in
Euclidean #-space and satisfy certain continuity conditions. The term cardinal is
often used when the set of knots is a lattice. Here, in addition to developing certain
basic properties of polyharmonic cardinal splines, it is shown that such splines
interpolate numerical data on the lattice uniguely. £ 1990 Academic

Press, Inc

1. INTRODUCTION

From one point of view, L J. Schoenberg’s theorv of univariate cardinal
splines of odd order, see [15], can be regarded as a development of certain
properties of those functions, f, which satisfy

def_ N

dx 2k N

on the complement of the integer lattice Z and enjoy appropriate smooth-
ness conditions on all of the real line R. A natural extension of these ideas
to the multivariate case would be tc consider those funciions /° whic

satisfy differential equations analogous to (1) on the complement of ti:;e
integer lattice Z" in R” and enjoy certain regularity properties on all of R".
in this development we consider the case where the differential operators
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are powers of the Laplacian. Many of the results in [15] have appropriate
analogues in this case. In this paper we consider only the basic properties
of such splines together with the problems of existence and uniqueness of
cardinal interpolation.

The motivation for our work came from an attempt to obtain a “B spline
like” basis for certain global interpolation schemes in R”. More precisely,
given a collection of points x|, .., x,,, in R", consider the linear subspace
of functions, f, of the form

flx)= z aj¢(x_xj)’ (2)
j=1

where ¢ is some fixed smooth function and «, ... a,, are arbitrary coef-
ficients; call this subspace V. Such functions are natural and simple
candidates for interpolants of multivariate scattered data. In several inter-
esting examples, such as ¢(x)=|x| or ¢(x)=./1+ |x|? the function ¢ does
not decay at infinity; see [7, 8] for these and other examples. As one may
suspect, this causes various problems, both practical and theoretical.
However, it is not difficult to see that, at least for the examples mentioned
above, certain linear combinations of translates of ¢, namely functions of
form (2), decay at infinity rather quickly. It was hoped that such combina-
tions would form a nice basis for ¥, analogous to that formed by the B
splines in the classic univariate examples. In attempting to formulate a
tractable theory we were led to consider the case where the set of points
X\, . X,, becomes the integer lattice Z" in R" and the functions ¢ are
fundamental solutions to certain powers of the Laplacian. This motivated
us to examine Schoenberg’s work [14, 15] more carefully and resulted in
the development introduced here.

The idea of interpolating in terms of linear combinations of Green’s
functions to powers of the Laplacian is not new. Although the earliest
published work devoted to the subject seems to be [107], it is quite clear
that many mathematicians were aware of the idea and many of its conse-
quences, either from the reproducing kernel Hilbert space viewpoint or
from the transparent generalization of the variational aspect of univariate
spline theory to the multivariate case; for instance, see [9]. For examples
of more recent work see [6,7,8, 13]. Among the shortcomings of the
obvious theory were the fact that such “splines” do not have a localized
basis and the restriction to the case of the finite domain. In [6] Duchon
developed a variational theory for interpolation to all of R” involving a
finite number of constraints which overcomes the second mentioned
shortcoming in an elegant way and allows for interesting generalizations.
Although our development concerns an infinite number of constraints and
does not rely on the variational properties of splines, it may also be
regarded as a certain generalization of [6].
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While working on an early draft of our theory we discovered that the
subject of “cardinal spline interpolation” was a booming business; for
example, see [3,4], and the references cited there. (In addiiion ¢
references on multivariate cardinal splines, the ex:ensive bibliography in
3] contains many references to work involving the Green’s function type
splines mentioned above.) However, although some of our results may
have analogues in the works cited above, we felt that this development had
enough novelty to warrant completion.

This paper is crganized as follows. In Section 2 we give the definitions
and derive the basic properties of k-harmonic splines. The cardinal mnter-
polation problem for k-harmonic splines is taken up in Section 3, w%ers it
is shown that under certain circumstances this problem has 2 unt
tion. The relationship of these splines to the multivariate anai ogue
Whittaker cardinal series is indicated at the end of that section; thi
prompted bv a question raised by C dP Bo-or

™

zivariazs ;unct;on& For exa*nple the svmbols i@ and 3 usuaii
multi-indices x* =x4'--. x*_etc, F(R"} and ¥'(R"} denote
space of rapidly decreasmg functions and its dual. the space ©
distributions. The introductory chapter of {13 contains
mary of this so-called multi-index notation and basic facts
”ﬁd ‘Fourier t*ansforms‘ other -“eferences which con:ain bax ic mate

vari ables are [2 5, 16] For Lhe Fouker Lrar:sfo‘ we use a standard
normaliization which is slightly different from that ﬁseé in 1] ty

A

-f\:

)={(2m)""
when ¢ is in S(R"); here the integral is taken over all of R" and ¢ is the
Fourier transform of ¢. In what follows, mtegrai& as in the above case, are
taken over R” uniess specifically denoted oiherwise.

2. DEFINITIONS AND BASIC PROPERTIES

Recall that a function or distribution u is said te be &-harmonic, k¥ 2
positive integer, if

A u=0 (3
on R Here 4 is the usual Laplace operator defined by
" 5214‘

Au=Y,

2
j=iv"j
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and, if k is greater than one, 4% denotes its kth iterate, Au = A(4*'u). Of
course A'=4. A polyharmonic function is one which is k-harmonic for
some positive integer k; for a treatise on the subject see [1].

The class H,(R") is the collection of all k-harmonic tempered distribu-
tions. In what foliows the classes H, (R") play a role similar to that played
by the polynomials, I7,, _(R), in univariate spline theory. Indeed we have
the following.

ProprosiTiON 1. The class H, (R") is a subspace of polynomials which
contains I, (R").

Proof. 1f u satisfies (3) then its Fourier transform, #, satisfies
[E|% 4(£) =0 for all ¢ in R" It follows that i is a distribution supported at
the origin and thus must be a finite linear combination of the Dirac
distribution and its derivatives. Hence u must be a polynomial. That
H(R") contains IT,, _,(R") follows from the fact that 4* is a homogeneous
differential operator of order 2k. |}

For k a positive integer satisfying 2k >#n + 1, we define SH.(R") to be
the subspace of &'(R") whose elements f enjoy the properties

(i) fisinC* "~}(R")
(4)
(ii) 4% =0onR"\Z".

Here Z denotes the set of integers and Z” denotes the integer lattice in R™
Elements of Z" are denoted by boldface symbols such as j and m.

A k-harmonic cardinal spline is an element of SH(R"). We say that a
function or distribution is a polyharmonic cardinal spline if it is in one of the
classes SH (R").

The reason for the condition 2k >n+ 1 can be explained as follows. If
2k <n+1 any distribution which is locally in L™ and satisfies condition
(4)(ii) must be k-harmonic on R". Thus if SH(R") is to consist of func-
tions which satisfy (4)(ii) and for which pointwise evaluation on Z" makes
sense then the last observation implies that SH,(R") must in fact be the
space H,.(R"). Like the space of polynomials in the case n=1, the class
H,(R") can only interpolate very restricted data on Z". Since we wish the
space SH,(R") to be rich enough to interpolate a wide class of data on Z”,
we assume 2k=n+ L.

In what follows we always assume that 2k>=n+ 1. For the sake of
clarity, however, we will remind the reader of this from time to time.

Fundamental solutions of (3) play an important role in the description
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[y
£
wh

of SH.(R"). For future reference we define £, to be the fundamental
solution of (3} given by
Ic Lk)|x) o if #isodd
n 7 .
Ex)= - - . .
{c{n, )x! *logix| if miseven,

[

where ¢(#, k) is a constant which depends only on # and k and is chosen
so that 4°E,(x) = (x). Here 6({x) denotes the unit Dirac distribution af the
origin. The Fourier transform of E, is

E&)=(2m) 2 (=<1~ (6)
The following propositions give some of the basic properties of the

spaces SH {R").

PROPOSITION 2. If f is a tempered distribution then the following
conditions are equivalent:

fisin SH.(R").

satisfies
=3 a;0(x—j} {73

where the @’s are constants and the sum is taken cver ail j in 27

w
o
=
o
-

Proof. Suppose fis in SH, (R"). To see that f sat;sﬁv {7} observ
in a sufficiently small neighborhood ¥ of any point j we have

A (x) Zo D*o(x -1},

where the sum is taken over some finite set of multi-indices v. Representa-
tion {7) will follow if we can show that b,=0 for v#0. To see this let ¢
be any anﬁmtely differentiable function Wlth support in N such that
#(x)=1 in a neighborhood of j. Then, since fis in C*{R"™Z,),

45(¢1) =Z b, DY6(x—)+ 1,

where ¢ is an infinitely differentiable function with support iz M. Now, if
E is any fundamental solution of (3) then

@f=Ex (A¢f) =3 b.D'E(x—)+ E+ 1,

where E = i is infinitely differentiable on R”. The fact that 5. =0 for v #0
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follows from the last equation, the fact that ¢f is in C* "~ }(R"), and the
behavior of D"E(x—j) in a neighborhood of j.

To see that (7) implies that f is in C* ~"~!(R") observe that in any
sufficiently small neighborhood N of j f(x)—a;E(x—j) is equal to a
k-harmonic function and therefore f(x) — a; E(x —j) is in C*(N). Note that
E(x—j)is in C*~"~!(R") and hence it follows that f is in C* "~ Y(N).
The desired conclusion is now an easy consequence of this fact. ||

In what follows we say that a sequence a;, j in Z”, is of polynomial
growth if there are constants ¢ and p such that |a;| <c(1+ |j)? for all j.
Similarly a locally bounded function f is said to be of polynomial growth
if [f(x)<e(l+1x])? for all x in R”. The following observation is an easy
consequence of the definitions.

Proposition 3. If fis in SH,(R") then the coefficients in representation
(7) are unique and are of polynomial growth. Furthermore, if f| and [, are
in SH,(R") and A*f, = A*f, then f,— [, is in H (R").

The proof of the following proposition is somewhat technical and
perhaps disruptive to the flow of main ideas of this section. We include it
for completeness.

ProposITiON 4. If fis in SH (R") then f is of polynomial growth.

Proof. For ¢ in F(R") let
9], =sup|x*D"(x)|,

where the supremum is taken over all x in R™ Since f is in &'(R") there
are constants M, N, and C; so that

IS < CL Y 19,0, (8)

where the sum is taken over all multi-indices 4 and v such that 0 < |u| <M
and 0 < |[v| < N. Since fis in SH.(R") there are constants M, and C, such
that

KA, 1< Ca ) 1100 9)

where the sum is taken over all multi-indices u such that 0 < |pu| < M,.
Observe that (f; ¢> = <[, ¢,> + {(—4)*f. ¢, and by induction

b =fibmd+ S =D 6, (10)

j=1
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where ¢, is defined by the formula for its Fourier transform

T 7= vy 2% Tiw PR I
@j(g):(l + K17 i) {11t
Formula {11} together with properties of the Fourier transform imply the
()= 2 g dhx), (12;
v

where , is defined by ¢, {x)=x"¢{x) and the g, are bounded continuous
functions. Hence there is a constant C; such that

|¢/'u(} Z Y¢) }:g’;;_ :13}
v u

Similar reasoning shows that if m satisfies 2k(#» — 1> I+ then

7

i¢m! Hov g C4 Z ; !'Yhd)( X E: V'

xgu”

.
[IN
Ry

where C, is a constant independent of ¢.
(10) together with estimates (8), (9), (13), and (14) imply that

A

mula {
there are positive constants C and x%, independent of ¢, such that

1< 651 <C | (1+ix)* i) dx

N

for all ¢ in F(R"). Estimate {15) together with Riesz representation implies
the desired result. |

This last proposition, when combined with the fact that continuocus
functions of polynomial growth are distributions in &'(R"), shows that
SH {R") could be defined, without any loss of generality. as the class of
continuous functions which satisfy (4) and are of polynomial growth.

In the case n=1, SH,(R") is the subspace of §,,, m =2k — i, consisting
of functions of polynomial growth. The space S,, is the space of piecewise
poivnomial functions defined by Schoenberg; see [15]. The reason we
restrict our attention to %'(R") is because our deveiopment relies on the
use of the Fourier transform. Thus in spirit this development is similar to
that in Schoenberg’s earlier work [14].

If « is a real parameter we define SH(R") to be that subspace of
SH,(R") tonsisting of functions f which satisfy | f{x}] < c{(1 + {x!])* for some
constant ¢. As an immediate consequence of Proposition 4 we have the
following.
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COROLLARY 1. SH (R™)=\)SH}(R"), where the union is taken over all
real a.

To complete our list of basic properties of SH (R") we include the
following.

PROPOSITION 5. Given a sequence {a;}, j in Z", which is of polynomial
growth, there is an [ in SH (R") such that

A (x)=Y a;6(x — ). (16)

Proof. Recall that 4*u=v has a solution u in &'(R") whenever v is in
F'(R™); for example, see [12]. The hypothesis implies that the right-hand
side of (16) is a tempered distribution and thus there is a tempered dis-
tribution f such that (16) holds. That f'is in SH,(R") now follows from
Proposition 2. '

PropPOSITION 6. SH (R") is a closed subspace of &¥'(R").

Proof. The mapping f — 4%f is continuous as an operator from ¥'(R")
to &'(R"), which means that the inverse image of a closed set is closed
under this mapping. Now, the set of those elements in &’(R") consisting of
Radon measures supported on Z” is a closed subspace of &’'(R"), and,
since SH,(R") is the inverse image of this subspace under the mapping
described above, the desired result follows. |

3. CARDINAL SPLINE INTERPOLATION

The problem of cardinal interpolation for k-harmonic splines is the
following:

Given a sequence of real or complex numbers, v = {v;}, jin Z”,

find an element fin SH(R") such that f(j) =, for all j.

This, of course, is a simple generalization of the standard problem in the
univariate case; see [ 15, p. 33].

Since elements of SH (R") are of polynomial growth it is clear that in
order for this problem to have a solution a necessary requirement on the
sequence v is that it also be of polynomial growth. This requirement is also
sufficient, as we shall show. We begin by first considering the fundamental
functions of interpolation.
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The function L, is defined by the formula for its Fourier transform

—2k

~d

o
e

pe |

- a2 <]

Li(¢)=(@2m)™"" TR

ZJEZ"!L. — &7}
If & is an integer such that 2k>n+ 1 then L, {x} is well defined as an
g KX

absolutely convergent integral. This function is the fundamental function of

interpoiation for k-harmonic splines. The reason for this terminology is the

fact that L.(j)=d,;, where d,; is the Kronecker delta. This and other
properties of L, and some of the consequences for the interpolation

problem are stated in Propositions 7 and 8. Before turning fo ihess-

propositions, however, we need to consider certain technical properties and

lemmas concerning L, and the related periodic distribution, &,, defined by

g Ly i

DE) = (—1E1M)F Lut2). {18}

Given a subset o/ of the real line R and a positive number &, o7, is the
subset of the complex plane defined by

d={reC:Rres and —e<Tr<e},

where Wt and 37 are the real and imaginary parts of 7, respectively.
Similarly &%=/ x --- x 54 is a subset of C". The symbol Q denotes the
interval —n < p <z and Q" denotes the cube

Or={&=(¢, .5 —n<i<m j=1, .0}

LemMa 1. The function &, and L, have extensions which are analytic in
a tube R7, for some &> 0.

Proof. For £ and 5 in R", let

=({, G =itin, St i) =5+

Tty

denote a point in complex #-space, C”, and put

Observe that

=
D
-

(2n)"2 [B4(&)] 7" = {1+ [4(OT* A&} La)] ™

where
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Choose ¢ small enough so that (£} #0 for all { in R7\Q%. Then it is readily
checked that F is analytic in Q". For ¢ in Q", [¢q(¢)]* F(&) > 0. Thus, by
reducing ¢ if necessary, we may assume that 1 + [¢({)]* F({) has no zeros
in Q7. Now, from (19), it follows that &, extends analytically to @7 and
hence, by periodicity, it extends analytically to R}.

The analytic extension of L, is given by &,({)[q({)]~* From (19) it is
evident that this extension is analytic in Q7. Analyticity on the rest of R}
is clear from the fact that g({) #0 there. |}

LemMA 2. The Fourier transform of ®, is a sum of constant multiples of
translates of the delta function. More precisely, ©,=®, and

Dilx)= Z aj(s(x'_j)a (20)

je"

where the a;'s depend on k and n. Furthermore, there are positive constants,
C and c, which are independent of j such that

la;l < Cexp(—cljl) (21)
for all j.

Proof. The periodicity of @, implies that &, satisfies (20) with

a;=(2m)"*"* |
uQn

eI OP(8) de. (22)

Now, by virtue of analyticity of &, the set Q" in (22) can be replaced by
{{:RCe Q" and I =y}, where 7= (y,, ... 7,), 7m are constants, |y,| =¢/2,
m=1, .., n, and the sign of y,, is chosen so that {j, +> >0 whenever j#0;
here ¢ is the same as that in Lemma 1. Upon doing this, a routine estimate
of the resulting integral gives (21). |

ProposITION 7. Let L, be defined by the formula for its Fourier trans-
Jorm (17), where k is an integer which satisfies 2k =n+ 1. Then L, has the
Jollowing properties:

(i) Ly is a k-harmonic cardinal spline.
(i) For all jin Z*
Lt i j=0
Lo=4, 7|
0 if j#0.
(iii) There are positive constanis A and a, depending on n and k but
independent of x, such that

|Li(x)] < A exp(—alx]) (24)

(23)

for all x in R".
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{iv) L, has the following representations ir terms of E,:
Lx)= Y aE (x—j)=&, * Elx), {25:
jezZ®

where @, is the function whose Fourier transform is defined by {
a;’s are the constants defined in Lemma 2. The series converges
and uniformly on all compact subsets of R".
Proof. (i} This follows from (20) and the fact that 4*L
(i1} Observe that Z,-Lk{; —2nj)={2m) "2, and write

L) = (2m) "2 | £,(8) e40d¢ = (2m) 2

med" ¥
\
3 —n2 < ~ [ 3 - " P -4
={2n} | Z W(E—2mm) e Fdi =—— 1 RO
ey, {2} e
mez }

The desired result is now an immediate consequence of the last formuia.
{iii} The proof of this estimate is analogous o the proof of {21} in
Lemma 2.
(ivt This is a transparent consequence of the definitions and
Lemma 2. §
For later mference we define %7, x real, to be the collection of those
sequences ¢ = {r;}, j in Z", which satlsfy

o] Se(1 +jf) {26;

for some constant ¢. Note that these classes are analogous to the ones in
[15, p. 347; they will also be used here in a similar fashion.

PROPOSITION 8. Suppose v={v;}, j in 2", is a sequence of polyromial
growth and f, is the function defined by

Sdx)= Z viLe(x—§) (27

je z"

v

Then the following are irue:

{i) The expansion (27) converges absolutely and uniformly in every
com pg ¢t subset of R".

(i) The function f, is a k-harmonic spline and f (3} =rv; for all §.
(Gily Ifvisin%* then f, is in SHL{R").
{w} If v;= P(j) for all j, where P(x) is a k-harmonic poiynomial, then

Jdxi=Plx) f r all x in R"
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Proof. Ttems (i)-(iii) are immediate consequences of Proposition 7.
(iv) Suppose P is a k-harmonic polynomial and f is defined by
fx)= Y PG)L(x—j).

jezZ"

Recall that any locally integrable function g of polynomial growth is in
S'(R"); furthermore for any ¢ in #(R") we have

(g ¢>= l gx)d(x)dx and  gxd(x)= l g(y) ¢(x—y) dy.

To prove (iv) of this proposition it suffices to show that

{L¢>=(P. ¢ (28)
for all ¢ in L (R").
To see (28) observe that

fidy= 2 PG) LexdG)=2n)"* 3 [PUDNLAE) $(EN]emams  (29)
jezZ" jezZ"

where the last equality follows by virtue of the Poisson summation formula.
To evaluate the expression on the extreme right in (29) set

Ay = [PEDYLE) $()]: - 2s;
and observe that for each j in Z”, L, may be expressed as

fL+1EP Po(8) ifj=0

c }1/’2[’: £Y —
(2m)"* L($) Ve—2mj|* yy(&)  otherwise,

(30)

where the ¥;’s are smooth functions such that $j(§)=¢j(é) #(E) is a test
function in #(R”) for each j. In view of (30) we may write

§ P(x)[$(x)+ (= A) po(x)1dx  if j=0

n/2 =
(2n)™* 4;= {J‘ P(x)(—4) [e "I*>¢(x)]1dx  otherwise.

(31)
Now, integrating by parts and using the fact that 4“P =0 results in

J PNy e 40gy(x) ] dr= [ [(=2)° P(x)] ™4 ) dx =0
(32)

when j # 0. Similar reasoning shows that

(27)" Ay = [ P(x) (x) dx. (33)
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Formuias (29), (30), (31), (32), and (33) imply {28), which is the desired
result. §
It should now be clear why L, is called the fundamental function of

interpolation for k-harmonic splines. Note that item {ii} of the previous
propositicn may be restated as follows.

COROLLARY 2. If the data v are of polynomial growih then the cardinal
interpolation problem for k-harmonic splines has a solution which has o
unique representation in terms of fundamental functions of interpolation. The
solution is given by

flx)= Y yLix—i) (34)

jeZ”

We now take up the question of uniqueness by first considering the
following technical lemma.

-

LemMvMa 3. Iffisin SHR") and [ is Z" periodic ihen [ is a4 constan?.
Proof. The hypothesis implies that
A=Y d(¢—2rj) and  A(x)=a) 5

=

R

—‘j 2
where both sums are taken over all j in Z”; @ and the ;s are constants.
These formulas together with Poisson summation imply

Z)k

!
i

LA)
Ux

i—d

for all j in Z”. The equation corresponding to j=0 in {35) implies that ¢
is 0; the rest of the equations in system (35) imply that ¢;=0 whenever
j#0. Thus f(x)=(2rn)~"?C,, which is the desired result. l

Prorosition 9. If fis in SH(R") and f(j)=10 for all § in Z" then | is
identically ©.

Proof. Recall that

Led
N

N

Af(x)y= Y ¢6(x—j). (2
jeZ?
Now, if ¢,=0 for all j, f must be a k-harmonic polynomial. This together
with the fact that f(j) =0 for all j implies the desired resuit.
Thus to complete the proof it suffices to show that ¢; =0 for all j.
To see this, write

glx)= Y ¢Ldx—j)

jez"

640.60.2-3
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and observe that
A(g— D+ f)=0, (37)

where @, is the distribution defined by Lemma 2. From (37) it follows that
g— @, *f is a k-harmonic polynomial P. Since @, *f(j)=0 for all j it
follows that g(j) = P(j) = ¢;.

Now, if P#0, there is a finite difference operator, 7, such that

TP(x)= Y bP(x—j)=B, (38)

jeF

where the sum is taken over a finite subset & of Z” and B is a non-zero
constant. Write

ATf(x)=TA(x)= Y TP{)é(x—j))=B Y d(x—j)  (39)

jezr jezn

and observe that (39) means that Tf(x —j)— Tf(x) is a k-harmonic poly-
nomial for each j. This, together with the fact that Tf(m —j)— Tf{m)=0
for all m and j implies that Tf is Z" periodic. Now, by virtue of Lemma 3,
Tf is a constant and hence

AT =0, (40)

Formulas (39) and (40) contradict the fact that B#0 and thus imply the
desired result. J

An immediate consequence of Proposition 9 of course is the fact that any
solution for the problem of cardinal interpolation for k-harmonic splines is
unique. We summarize our results concerning the interpolation problem as
follows:

THEOREM 1. If v={v;}, j in Z", is a sequence of polynomial growth then
there is a unique k-harmonic spline f such that f(j) = v, for all j. Furthermore,
if visin Y* then fis in SHY(R").

Note that the converse of the theorem above follows immediately from the

definitions and results in Section 2.

THEOREM 2. Every k-harmonic spline f has a unique representation in
terms of translates of L,, namely

)= f() Llx ).

isz"
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POLYHARMONIC CARDINAL SPLINES
We conclude this paper with a result that may justify the use of the
adjective “cardinal” when referring to these splines. For the univariate case

see [15].

ProprosITION 10. For x=(x{, .., X,)

I
sin 7x;
lim L,(x)= H - (41}
k— x i=1i 1
uniformiy iit x on R".
Proof. irst observe the rmula for £, may rewritten as
Proof. First ob that the formula for L be tten as
oz ")! lflzk 17"
L&)=2m) " {1+ ¥ ———pp 42}
t j=0 !;-—47{} J

Now, for i #0 and ¢ in the interior of @", | — 2njj > |£]. Hence, for such
£, it is ciear from (42) that

S

i
- LE—2mj). (44)
\
J

From (44) it is clear that for & in the complement of the closure of §”

lim L.{&)=0. (45)

Again using (44) together with routine estimates shows that, whe::ev
2k=n+1, L, is dominated by an integrable function, independent of &.
This together with (43), (45), and the dominated convergence the&rs n
implies that (2r)*? L, converges to the characteristic (indicator} function
of 0" in L'(R") and hence, the desired result foilows by taking Fourier
transforms. f§
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