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Polyharmonic splines, sometimes called thin plate splines, are distributions which
are annihilated by iterates of the Laplacian in the complec.ent of a discrete set in
Euclidean n-space and satisfy certain continuity conditions. The term cardinal is
often used when the set of knots is a lattice. Here, in addition to developing certain
basic properties of polyharmonic cardinal splines, it is shown that such splines
interpolate numerical data on the lattice uniquely. ~, 1990 ,",eademie Press. Inc.

1. Il"TRODUCTIO~

From one point of view, I. J. Schoenberg's theory of univariate cardinal
splines of odd order, see [15], can be regarded as a development of certain
properties of those functions, f, which satisfy

(1)

on the complement of the integer lattice Z and enjoy appropriate smooth
ness conditions on all of the real line R. A natural extension of these ideas
to the multivariate case would be to consider those functions f which
satisfy differential equations analogous to (1) on the complement of the
integer lattice zn in Rn and enjoy certain regularity properties on all of R n

.

In this development we consider the case where the differential operators

* Both authors were partially supported by the Air Force Office of Scientific Researc;;
under Grant AFOSR-86-0145.

141
J021-9045/90 neD

Copyright .'(, 1990 by Academ~c Press. Inc.
An rights 01 reprodllctiofi in any form 'ese:.-"'ed.



142 MADYCH A~D KELSON

are powers of the Laplacian. Many of the results in [15] have appropriate
analogues in this case. In this paper we consider only the basic properties
of such splines together with the problems of existence and uniqueness of
cardinal interpolation.

The motivation for our work came from an attempt to obtain a "B spline
like" basis for certain global interpolation schemes in R n

. More precisely,
given a collection of points XI' ... , X m , in Rn

, consider the linear subspace
of functions,.f of the form

m

f(x) = L aj¢J(x - x),
j~ I

(2)

where ¢J is some fixed smooth function and aI' ... , am are arbitrary coef
ficients; call this subspace V1>" Such functions are natural and simple
candidates for interpolants of multivariate scattered data. In several inter
esting examples, such as ¢J(x) = Ixl or ¢J(x) = ",/1 + Ix1 2

, the function 1J does
not decay at infinity; see [7,8] for these and other examples. As one may
suspect, this causes various problems, both practical and theoretical.
However, it is not difficult to see that, at least for the examples mentioned
above, certain linear combinations of translates of ¢J, namely functions of
form (2), decay at infinity rather quickly. It was hoped that such combina
tions would form a nice basis for V1> analogous to that formed by the B
splines in the classic univariate examples. In attempting to formulate a
tractable theory we were led to consider the case where the set of points
x I' ..., Xm becomes the integer lattice zn in R" and the functions ¢J are
fundamental solutions to certain powers of the Laplacian. This motivated
us to examine Schoenberg's work [14, 15] more carefully and resulted in
the development introduced here.

The idea of interpolating in terms of linear combinations of Green's
functions to powers of the Laplacian is not new. Although the earliest
published work devoted to the subject seems to be [10], it is quite clear
that many mathematicians were aware of the idea and many of its conse
quences, either from the reproducing kernel Hilbert space viewpoint or
from the transparent generalization of the variational aspect of univariate
spline theory to the multivariate case; for instance, see [9]. For examples
of more recent work see [6, 7, 8, 13]. Among the shortcomings of the
obvious theory were the fact that such "splines" do not have a localized
basis and the restriction to the case of the finite domain. In [6] Duchon
developed a variational theory for interpolation to all of Rn involving a
finite number of constraints which overcomes the second mentioned
shortcoming in an elegant way and allows for interesting generalizations.
Although our development concerns an infinite number of constraints and
does not rely on the variational properties of splines, it may also be
regarded as a certain generalization of [6].
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Whiie workmg on an early draft of our theory ,ve discovered that the
subject of "cardinal spline interpolation" was a booming business; for
example, see [3,4], and the references cited there. (In addition to
references on multivariate cardinal splines, the eX':ensive bibliography in
[3] contains many references to work involving th,;; Green's function type
splines mentioned above.) However, although some of our results may
have analogues in the works cited above, we felt that this development had
enough novelty to warrant completion.

This paper is organized as follows. In Section 2 we give the definitions
and derive the basic properties of k-harmonic splines. The cardinal inter
polation problem for k-harmonic splines is taken up in Section 3, where it
is shown that under certain circumstances this problem has a unique solu
tion. The relationship of these splines to the multivariate analogue of the
Whittaker cardinal series is indicated at the end of that section; this \-vas
prompted by a question raised by C. de Boor.

We use mathematical notation which is standard when dealing with mul
tivariate functions. For example, the symbols p. and r iisually will denote
multi-indices x P = xi' ... x~", etc., :f(R") and Sf"(R") denote the Schwartz
space of rapidly decreasing functions and its dual, the space of tempered
distributions. The introductory chapter of [11 J contains a concise sum
mary of this so-called multi-index notation and basic facts on distributions
and Fourier transforms: other references which comain bask material used
here concerning distributions, Fourier transforms, and several complex
variables are [2,5, 16]. For the Fourier transform we use a standard
normalization which is slightly different from that used in [11], namely,

when r/J is in .Y'(R"); here the integral is taken over all of R" and ~ is the
Fourier transform of ¢. In what follows, integrals, as in the above case. are
taken over R" unless specifically denoted othenvise.

2. DEFr~ITIONS A""D BASIC PROPERTIES

Recall that a function or distribution u is said to be k-harmonic; k. a
positive integer, if

on R". Here L1 is the usual Laplace operator defined by
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and, if k is greater than one, Ak denotes its kth iterate, Aku=A(A k- 1u). Of
course ,11 = ,1. A polyharmonic function is one which is k-harmonic for
some positive integer k; for a treatise on the subject see [1].

The class Hk(Rn
) is the collection of all k-harmonic tempered distribu

tions. In what follows the classes Hk(Rn
) playa role similar to that played

by the polynomials, Il2k - 1(R), in univariate spline theory. Indeed we have
the following.

PRoPOSITIO)l 1. The class Hk(Rn
) is a subspace of polynomials which

contains Il2k _ 1(R").

Proof If u satisfies (3) then its Fourier transform, U, satisfies
I~12k u(~) = 0 for all ~ in R n

• It follows that u is a distribution supported at
the origin and thus must be a finite linear combination of the Dirac
distribution and its derivatives. Hence u must be a polynomial. That
Hk(R n

) contains Il2k _ 1(R n
) follows from the fact that Ak is a homogeneous

differential operator of order 2k. I

For k a positive integer satisfying 2k ~ 12 + 1, we define SHk(Rn
) to be

the subspace of 9'''(R'') whose elements f enjoy the properties

(i) fisinC2k-n-l(Rn)
(4 )

(ii) Akf= 0 on R"\Z".

Here Z denotes the set of integers and zn denotes the integer lattice in Rn.
Elements of Z" are denoted by boldface symbols such as j and m.

A k-harmonic cardinal spline is an element of SHk(R n
). We say that a

function or distribution is a polyharmonic cardinal spline if it is in one of the
classes SHk( Rn).

The reason for the condition 2k ~ n + I can be explained as follows. If
2k < n + 1 any distribution which is locally in L x; and satisfies condition
(4)(ii) must be k-harmonic on R n

. Thus if SHk(Rn
) is to consist of func

tions which satisfy (4)( ii) and for which pointwise evaluation on zn makes
sense then the last observation implies that SHk(Rn

) must in fact be the
space Hk(Rn

). Like the space of polynomials in the case n = 1, the class
Hk(Rn) can only interpolate very restricted data on zn. Since we wish the
space SHk(Rn) to be rich enough to interpolate a wide class of data on zn,
we assume 2k ~ n + 1.

In what follows we always assume that 2k ~ 12 + 1. For the sake of
clarity, however, we will remind the reader of this from time to time.

Fundamental solutions of (3) play an important role in the description
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of SHk(R"). For future reference we define Ek to be the fundamental
solution of (3) given by

fc(n k)'[XI2k-Ii
.", ) ,',' I
.L.k~X, =., .? "

lc(n, k)ixl-k-"logixi

if n is odd

if n is even,
(5)

where c(n, k) is a constant which depends only on nand k and is chosen
so that AKEk \x)=6(x):Here b(x) denotes the unit Dirac distribution at the
origin. The Fourier transform of Ek is

(6)

The following propositions give some of the basic properties of the
spaces SHk(R").

PROPOSITION 2. If I is a tempered distribution then the foliOlring
conditions are equivalent:

(i) f is in SHk(R").

(ii) f satisfies

IP'f\f ,.
\1 ;

where the a's are constants and the sum is taken acer aU j in Z".

Proof Supposefis in SHk(R"). To see that f satisfies (7) observe that
in a sufficiently small neighborhood N of any poin~ j we have

kf ) ,"' D"-' "Ll (x = L.lJ" o~x - Jj,

where the sum is taken over some finite set of multi-indices v. Representa
tion (7) will follow if we can show that b" = 0 for v # O. To see this let r/J
be any infinitely differentiable function with support in IV such that
¢i(x) = 1 in a neigh borhood of j. Then, since f is in C''' (R"\,Z" ),

where i/J is an infinitely differentiable function with support in. N. Now, if
E is any fundamental solution of (3) then

,pI= E * (Llk,pf) = L b,D'E(x - j) + E * ljJ,

where E * Ij; is infinitely differentiable on R n
• The fact that b. = 0 for r:j= 0
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follows from the last equation, the fact that ¢Jfis in c2k-n-I(Rn), and the
behavior of D''E(x - j) in a neighborhood of j.

To see that (7) implies that f is in C2k - n
-

I (W) observe that in any
sufficiently small neighborhood N of j f(x) - ajE(x - j) is equal to a
k-harmonic function and therefore f(x) - ajE(x - j) is in CX(N). Note that
E(x - j) is in Clk-n-I(R") and hence it follows that f is in C2k -I!-I(N).
The desired conclusion is now an easy consequence of this fact. I

In what follows we say that a sequence aj , j in Z", is of polynomial
growth if there are constants c and p such that lajl ~ c( 1+ IjlV for all j.
Similarly a locally bounded function f is said to be of polynomial growth
if if(x)1 ~ c( 1+ Ixl)P for all x in RI!. The following observation is an easy
consequence of the definitions.

PRoPOSITIOi>i 3. If f is in SHk(Rn) then the coefficients in representation
(7) are unique and are of polynomial growth. Furthermore, if fl and f2 are
in SHk(R") and LJkfl = LJ kf2 then fl - f2 is in Hk(RI!).

The proof of the following proposition is somewhat technical and
perhaps disruptive to the flow of main ideas of this section. We include it
for completeness.

PROPOSITION 4. Iff is in SHk(RI!) then f is of polynomial grOlvth.

Proof For ¢J in Y'(R") let

1¢JI,u". = suplxIlD"¢J(x)l,

where the supremum is taken over all x in R". Since f is in Y"(RI!) there
are constants }.{, N, and C I so that

(8)

where the sum is taken over all multi-indices 11 and v such that 0 ~ 1111 ~ M
and O~ Ivl ~N. Sincefis in SHk(Rn

) there are constants M I and C2 such
that

(9 )

where the sum is taken over all multi-indices 11 such that O~ 1111 ~MI'
Observe that <l r/J) = <l r/J I) + <(- LJ )kl r/J I) and by induction

m

<lr/J)=<lr/Jm)+ L «-LJ)klr/Jj)'
j= I

(10)
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where ¢j is defined by the formula for its Fourier transform

147

Formula (11) together with properties of the Fourier transform imply tnz.t

[ I2}

",..here !/I, is defined by l/JAx)=x'¢J(x) and the g, are bounded continuous
functions. Hence there is a constant C 3 such that

1¢J;!.ll.O:::; C3 L f IX'rP(x)1 dx.
v:O;;;!1

Similar reasoning shows that if m satisfies 2k(m - 1J> ;"i then

(13}

(14)

where C4 is a constant independent of ¢.
Formula (10) together with estimates (8), (9), (13), and (14) imply that

there are positive constants C and Ci, independent of 1;, such that

I <. r ''\ I ...... c I·' (1 -.L i I)·'· J. ( v'! '.
I j, (/J/! ~ I rX , Iq}t,-~"Ji a.·r; (15)

for all ¢ in 9"(R"). Estimate (15) together with Riesz representation implies
the desired result. I

This last proposition, when combined with the fact that continuous
functions of polynomial growth are distributions in :r(Rn), shows that
SHk(Rn) could be defined, without any loss of generality. as the class of
continuous functions which satisfy (4) and are of polynomial growth.

In the case n = 1, SHk(R") is the subspace of Sm, m =2k - 1, consisting
of functions of polynomial growth. The space Sm is ',he space of piecewise
polynomial functions defined by Schoenberg; see [15]. The reason we
restrict our attention to Y"(R") is because our development relies on the
use of the Fourier transform. Thus in spirit this development is similar to
that in Schoenberg's earlier work [14].

If Y. is a real parameter we define SH~(Rn) to be that subspace of
SHk(W) consisting of functions/which satisfy i1(x)1 :::; c( 1 + Ix!)" for some
constant c. As an immediate consequence of Proposition 4 we have the
following.
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COROLLARY 1. SHk(Rn) = USH~(R"), where the union is taken over all
real 0(.

To complete our list of basic properties of SHk(W) we include the
following.

PROPOSITION 5. Given a sequence {aj}, j in ZI!, which is of polynomial
gmwth, there is an f in SHk(RI!) such that

(16)

Proof Recall that JkU = v has a solution u in g"(RI!) whenever v is in
9'''(R"); for example, see [12]. The hypothesis implies that the right-hand
side of (16) is a tempered distribution and thus there is a tempered dis
tribution f such that (16) holds. That f is in SHk(RI!) now follows from
Proposition 2. I

PROPOSITION 6. SHk(R") is a closed subspace of ,9'''(Rn).

Proof The mappingf~ jkfis continuous as an operator from ,9'''(RI!)
to g"(R"), which means that the inverse image of a closed set is closed
under this mapping. Now, the set of those elements in g"(W) consisting of
Radon measures supported on Z" is a closed subspace of 9"'(R"), and,
since SHk(W) is the inverse image of this subspace under the mapping
described above, the desired result follows. I

3. CARDINAL SPLP.'lE IJ'"TERPOLATION

The problem of cardinal interpolation for k-harmonic splines IS the
following:

Given a sequence of real or complex numbers, v = {L'j}' j in Z",

find an elementfinSHk(RI!) such thatf(j)=vj forallj.

This, of course, is a simple generalization of the standard problem in the
univariate case; see [15, p.33].

Since elements of SHk(Rn) are of polynomial growth it is clear that in
order for this problem to have a solution a necessary requirement on the
sequence v is that it also be of polynomial growth. This requirement is also
sufficient, as we shall show. We begin by first considering the fundamental
functions of interpolation.
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The function L k is defined by the formula for its Fourier transform
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(1 i ,l

If k is an integer such that 2k ~ n + 1 then Lk(x) is well defined as an
absolutely convergent integral. This function is the fundamentai function of
interpolation for k-harmonic splines. The reason for this terminology is the
fact that Lk(j) = OOj, where 60j is the Kronecker delta. This and other
properties of L k and some of the consequences for the interpolation
problem are stated in Propositions 7 and 8. Before turning to these
propositions, however, we need to consider certain technical properties and
lemmas concerning L k and the related periodic distribution, cP k • defined by

(18)

Given a subset sf of the real line R and a positive number 8, sf, is the
subset of the complex plane defined by

sf. = {r E C: 9tr E sf and - B < .Jr < I:; },

where 9tr and 3r are the real and imaginary parts of T, respectively.
Similarly cc1; =~ x '" x~ is a subset of C. The symbol Q denotes the
interval - IT < P~ IT and Q" denotes the cube

LEMMA 1. The function rP k and Lk haL'e extensions which are analyTic in
a tube R;, for some I:; > O.

Proof For ~ and '7 in R", let

(= ((I' ... , (,,)= (~I + iYll' ..., ~,,+ i'7,,) = r; -+- ill

denote a point in complex n-space, C', and put

q(O= - I (;".
m=l

Observe that

where

F(O= I q('-2nj)~k.
jEzn., {O}
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Choose 8 small enough so that q(O I' 0 for all ( in R;\Q;. Then it is readily
checked that F is analytic in Q;. For ~ in Q", [q(~)Y F(~)~O. Thus, by
reducing 8 if necessary, we may assume that 1+ [q(O]k F(O has no zeros
in Q;. Now, from (19), it follows that &k extends analytically to Q; and
hence, by periodicity, it extends analytically to R;.

The analytic extension of i k is given by &k(O[q(O] -k. From (19) it is
evident that this extension is analytic in Q;. Analyticity on the rest of R;
is clear from the fact that q(O I' 0 there. I

LEMMA 2. The Fourier transform of &k is a sym of constant multiples of
translates of the delta function. More precisely, &k = rpk and

(20)
jEZn

Ivhere the a/s depend on k and n. Furthermore, there are positive constants,
C and c, which are independent of j such that

for all j.

Proof The periodicity of &k implies that rpk satisfies (20) with

aj = (2rr)-2/2 r ei<u>&k(O d~.
. "Qn

(21 )

(22)

Now, by virtue of analyticity of &k the set Q" in (22) can be replaced by
g :9\( E Q" and 3( = "i}, where OJ' = ('), 1> ••. , i',,), Ym are constants, Ii'm I= 8/2,
In = 1, ..., n, and the sign of "im is chosen so that <j, (' >> 0 whenever j I' 0;
here 8 is the same as that in Lemma 1. Upon doing this, a routine estimate
of the resulting integral gives (21). I

PROPOSITION 7. Let L k be defined by the formula for its Fourier trans
form (17), lvhere k is an integer which satisfies 2k ~ n + 1. Then L k has the
follOlving properties:

if j =0
if j 1'0.

(i)

(ii)

L k is a k-harmonic cardinal spline.

For all j in Z"

Lk(j) = {~ (23)

(iii) There are positive constants A and a, depending on nand k but
independent of x, such that

(24)
for all x in R".
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(iv) L k has the following representations in terms of E k :

L,Ax) = L ajEk(x - j) = It k * EAx),
jEZ'
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{?~ ~
\ .... J i

dlere tP k is the fimction whose Fourier transform is defined by (18) and the
a/s are rhe constants defined in Lemma 2. The series COi1L'erges absolutely
and unijfmnly on all compact subsets of R n

.

Proof (il This follows from (20) and the fact that ["L k = if:>k'

(ii) Observe that LjLk(~-2nj)=(27l")-;l2,and ,,;rite

L k (j)=(2rr)-n2 rL.dOe i (j,Dd;=(2rr)-n2 I i Lk (;-2TCm) ei <i.Dd;
mEZn ';Q,1

The desired result is now an immediate consequence of the last formula.

(iii) The proof of this estimate is analogous ~o the proof of (21) in
Lemma 2.

(ivi This IS a transparent consequence of the definitions and
Lemma 2. I

For later reference, we define '!IF, J( real, to be the collection of those
sequences i: = {rJ, j in zn, which satisfy

(26)

for some constant c. Note that these classes are analogous to the ones in
[15, p. 34J; they will also be used here in a similar fashion.

PROPOSlTIO?'i 8. Suppose v = {vj }, j in Z", is a sequence of polynomial
growth and I, is the function defined by

f,(x)= I L'jLk(x-j),
jEZ'l

(27)

Then the foilO\ving are true:

(i) The expansion (27) converges absolutely and uniformly in erery
cornpact subset of Rn

•

(ii) The function f,. is a k-harmonic spline and f,,(j) = Vj for all j.

(iii) .lfr is in ,'flj' thenf,. is in SH%(R").

(iv) Ifvj=P(j)for all j, where P(x) is a k-harmonic po(vnomial, then
f,(x)=P(x)for all x in R n

.
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Proof Items (i)-(iii) are immediate consequences of Proposition 7.

(iv) Suppose P is a k-harmonic polynomial and f is defined by

f(x) = L P(j) Ldx - j).
jEZn

Recall that any locally integrable function g of polynomial growth is in
Y"(R"); furthermore for any r/J in Y'(R") we have

(g, r/J) = Jg(x) r/J(x) dx and g*r/J(x)=J g(y)r/J(x-y)dy.

To prove (iv) of this pro"position it suffices to show that

(f, r/J) = (P, r/J)

for all r/J in Y'(Rn
).

To see (28) observe that

(28)

jEZ" jEZ"

where the last equality follows by virtue of the Poisson summation formula.
To evaluate the expression on the extreme right in (29) set

and observe that for each j in zn, Lk may be expressed as

ifj =0
otherwise,

(30)

where the "'/s are smooth functions such that ~j(O = "'j(O r/J(~) is a test
function in Y'(R/l) for each j. In view of (30) we may write

if j =0
otherwise.

(31)

Now, integrating by parts and using the fact that ,dkP = 0 results in

JP(x)( -Ll)k [e-i<LX)r/Jj(x)] dx= J[( _Ll)k P(x)] e-i<j,x>r/Jj(x) dx=O

(32)

when j =1= O. Similar reasoning shows that

(2n)"i2 Ao=JP(x) r/J(x) dx. (33)
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Formulas (29), (30), (31), (32), and (33) imply (28), which is the desired
result. I

It should now be clear why L k is called the fundamental function of
interpolation for k-harmonic splines. Note that item (ii) of the previous
proposition may be restated as follows.

COROLLARY 2. If the data L' are ofpo~vnomialgrowth then the cardinal
interpolation problem for k-harmonic splines has a solution hhich has 0

unique representation in terms offundamental functions of interpolatioN. The
solution is given by

j,.(X) == L cjLk(x - j). (34)
jEZr,

We now take up the question of uniqueness by first considering the
following technical lemma.

LEM~fA 3. If! is in SHk(R") and f is Z" periodic then f is a constant.

Proof The hypothesis implies that

and 'k!() " c, "L1x.=aL,°vc-jj,

where both sums are taken over all j in Z"; a and the Cj'S are constants.
These formulas together with Poisson summation imply

(35)

for all j in Z". The equation corresponding to j =0 in (35) implies that Ci

is 0; the rest of the equations in system (35) imply that Cj = 0 whenever
j#O. Thusf(x) = (2n)-"'2Co, which is the desired result. •

PROPOSITIO;'; 9. (f f is in SHk(R") and f(j) = 0 for all j in Z" then f is
identically O.

Proof Recall that

Ak/(x) = L Cjb(X - j).
jEZn

(36j

Now, if c; = 0 for all j, f must be a k-harmonic polynomial. This togethe,
with the fact that I(j) = 0 for all j implies the desired result.

Thus to complete the proof it suffices to show that Cj = 0 for all j.
To see this, write

g(x) = L cjLk(x - j) ..
jE zn

~O.60.·2-3
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(37)

where r:[Jk is the distribution defined by Lemma 2. From (37) it follows that
g - r:[J k * f is a k-harmonic polynomial P. Since r:[J k * f(j) = 0 for all j it
follows that g(j) = P(j) = Cj'

Now, if P -=/: 0, there is a finite difference operator, T, such that

TP(x)= L bjP(x-j)=B,
jE3""

(38)

where the sum is taken over a finite subset ff of zn and B is a non-zero
constant. Write

LlkTf(x) = TLlkf(x) = I TP(j)<5(x-j)=B I b(x-j) (39)
jEZIl jE Z"

and observe that (39) means that Tf(x-j)- Tf(x) is a k-harmonic poly
nomial for each j. This, together with the fact that Tf(m - j) - Tf(m) = 0
for all m and j implies that Tf is zn periodic. Now, by virtue of Lemma 3,
Tf is a constant and hence

(40)

Formulas (39) and (40) contradict the fact that B-=/:O and thus imply the
desired result. I

An immediate consequence of Proposition 9 of course is the fact that any
solution for the problem of cardinal interpolation for k-harmonic splines is
unique. We summarize our results concerning the interpolation problem as
follows:

THEOREM 1. If v = {Vj}' j in Z", is a sequence of polynomial growth then
there is a unique k-harmonic spline f such that f(j) = Vj for all j. Furthermore,
if v is in 6JF then f is in SH%(Rn).

Note that the converse of the theorem above follows immediately from the
definitions and results in Section 2.

THEOREM 2. Every k-harmonic spline f has a unique representation in
terms of translates of Lin namely

f(x) = L f(j) LAx - j).
jE zr.
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We conclude this paper with a result that may justify the use of the
adjective "cardinal" when referring to these splines. For the univariate case
see [15].

PROPOSITION 10. Forx=(x1, ...,Xn )

(41 )

uiliform!y iii x on R".

Proof First observe that the formula for Lk may be rewritten as

(42)

No\v, for j # 0 and ~ in the interior of Q", k - 2nji > I~!. Hence, for such
;, it is clear from (42) that

lim lk(O = (lrr)-n2.
k~ x

(43)

To see what happens for general ,;'s write, by virtue of the periodicity of

<i>k'

From (44) it is clear that for ¢ in the complement of the closure of Q"

lim Lk (¢) = O.
k -+ x

(45)

Again using (44) together with routine estimates shows that, whenever
2k ~ 11 + 1, Lk is dominated by an integrable function, independent of k.
This together with (43), (45), and the dominated convergence theorem
implies that (lIT)"'2 Lk converges to the characteristic (indicator) function
of Q" in L I(Rfi

) and hence, the desired result foHows by taking Fourier
transforms, I
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